
1

Reliability Modeling for Safety Critical Software

 Norman F. Schneidewind, Fellow IEEE

IEEE Transactions on Reliability, Vol. 46, No.1, March 1997, pp. 88-98

Code IS/Ss
Naval Postgraduate School

Monterey, CA 93943, U.S.A.
Voice: (831) 656-2719
Fax : (831) 372-0445

Internet: nschneid@nps.navy.mil

Keywords: software reliability prediction, safety critical software, risk analysis.

Summary and Conclusions

 We show how software reliability predictions can increase confidence in the reliability of

safety critical software such as the NASA Space Shuttle Primary Avionics Software System

(Shuttle flight software). This objective was achieved using a novel approach to integrate

software safety criteria, risk analysis, reliability prediction, and stopping rules for testing. This

approach is applicable to other safety critical software. We only cover the safety of the

software in a safety critical system. The hardware and human operator components of such

systems are not explicitly modeled nor are the hardware and operator induced software

failures. Our concern is with reducing the risk of all failures attributed to software. Thus, our

use of the word safety refers to software safety and not to system safety. By improving the

reliability of the software, where the reliability measurements and predictions are directly

related to mission and crew safety, we contribute to system safety.

2

Remaining failures, maximum failures, total test time required to attain a given fraction

of remaining failures, and time to next failure are shown to be useful reliability

measurements and predictions for: 1) providing confidence that the software has achieved

safety goals; 2) rationalizing how long to test a piece of software; and 3) analyzing the risk

of not achieving remaining failure and time to next failure goals. Having predictions of the

extent that the software is not fault free (remaining failures) and whether it is likely to

survive a mission (time to next failure) provide criteria for assessing the risk of deploying the

software. Furthermore, fraction of remaining failures can be used as both an operational

quality goal in predicting total test time requirements and, conversely, as an indicator of

operational quality as a function of total test time expended.

Software reliability models provide one of several tools that software managers of the

Shuttle flight software are using to provide confidence that the software meets required safety

goals. Other tools are inspections, software reviews, testing, change control boards, and

perhaps most important -- experience and judgement.

1. Introduction

We propose that two categories of software reliability measurements (i.e., observed failure

data used for model parameter estimation) and predictions (i.e., forecasts of future reliability

using the parameterized model) be used in combination to assist in assuring the safety of the

software in safety critical systems like the Shuttle flight software. The two categories are: 1)

measurements and predictions that are associated with residual software faults and failures,

3

and 2) measurements and predictions that are associated with the ability of the software to

survive a mission without experiencing a serious failure. In the first category are: remaining

failures, maximum failures, fraction of remaining failures, and total test time required to

attain a given number or fraction of remaining failures. In the second category are: time

to next failure and total test time required to attain a given time to next failure. In addition,

we define the risk associated with not attaining the required remaining failures and time to

next failure. Lastly, we derive a quantity from the fraction of remaining failures that we call

operational quality.

 The benefits of predicting these quantities are: 1) they provide confidence that the

software has achieved safety goals, and 2) they provide a means of rationalizing how long

to test a piece of software (stopping rule). Having predictions of the extent that the software

is not fault free (remaining failures) and its ability to survive a mission (time to next failure)

are meaningful for assessing the risk of deploying safety critical software. In addition, with

this type of information a software manager can determine whether more testing is warranted

or whether the software is sufficiently tested to allow its release or unrestricted use. These

predictions, in combination with other methods of assurance, such as inspections, defect

prevention, project control boards, process assessment, and fault tracking, provide a

quantitative basis for achieving safety and reliability goals [3].

 Risk in the Webster's New Universal Unabridged Dictionary is defined as: "the chance

of injury; damage, or loss" [19]. Some authors have extended the dictionary definition as

4

follows: "Risk Exposure=Probability of an Unsatisfactory Outcome*Loss if the Outcome

is Unsatisfactory" [2]. Such a definition is frequently applied to the risks in managing

software projects such as budget and schedule slippage. In contrast, our application of the

dictionary definition pertains to the risk of executing the software of a safety critical system

where there is the chance of injury (e.g., astronaut injury or fatality), damage (e.g., destruction

of the Shuttle), or loss (e.g., loss of the mission) if a serious software failure occurs during

a mission. We have developed risk criterion metrics to quantify the degree of risk associated

with such an occurrence.

 Lockheed-Martin, the primary contractor on the Shuttle flight software project, is

experimenting with a promising algorithm which involves the use of the Schneidewind

Software Reliability Model to compute a parameter: fraction of remaining failures as a

function of the archived failure history during test and operation [10]. Our prediction

methodology uses this parameter and other reliability quantities to provide bounds on total

test time, remaining failures, operational quality, and time to next failure that are necessary

to meet Shuttle safety requirements. We also show that there is a pronounced asymptotic

characteristic to the total test time and operational quality curves that indicate the possibility

of big gains in reliability as testing continues; eventually the gains become marginal as testing

continues. We conclude that the prediction methodology is feasible for the Shuttle and other

safety critical systems.

5

 We only cover the safety of the software in a safety critical system. The hardware and

human operator components of such systems are not explicitly modeled nor are the hardware

and operator induced software failures. However, in practice, these hardware-software

interface and human operator-software interface failures may be very difficult to identify as

such; these failures may be recorded as software failures. Our concern is with reducing the

risk of all failures attributed to software. Thus, our use of the word safety refers to software

safety and not to system safety.

Although remaining failures has been discussed in general as a type of software reliability

prediction [13], and various stopping rules for testing have been proposed, based on costs

of testing and releasing software [4, 5, 8, 17], failure intensity [12], and testability [18], our

approach is novel because we integrate software safety criteria, risk analysis, reliability

prediction, and a stopping rule for testing. For a system like the Shuttle, where human lives

are at risk, we cannot use economic or time-to-market criteria to determine when to deploy

the software. Although failure intensity has proven useful for allocating test effort and

determining when to stop testing in commercial systems [12], this criterion is not directly

related to software safety. In a safety critical system, the prediction of remaining failures and

identification of the faults which cause them is more relevant to ensuring safety than the trend

of failure intensity over time. The latent faults must be found and removed through additional

testing, inspection, or other means, if the safety of the mission is not to be jeopardized.

Furthermore, as we will show, remaining failures, along with time to next failure, can be

6

used as risk criteria. It is not clear how failure intensity could be a meaningful safety

criterion.

Because testability attempts to quantify the probability of failure, if the code is faulty

[18], this criterion has a relationship with reliability if we know that the code is faulty.

However in the Shuttle and other safety critical software, our purpose is to predict whether

the code is faulty. For safety critical software, we must use reliability measurements and

predictions to assess whether safety and mission goals are likely to be achieved.

We first define two criteria for software safety. Then we apply these criteria to risk

analysis of safety critical software, using the Shuttle flight software as an example. Next, we

define and provide brief derivations for a variety of prediction equations that are used in

reliability prediction and risk analysis; included is the relationship between time to next failure

and reduction in remaining failures. This is followed by an explanation of the principal of

optimal selection of failure data that involves selecting only the most relevant set of failure

data for reliability prediction, with the result of producing more accurate predictions than

would be the case if the entire set of data were used. Then we show how the prediction

equations can be used to integrate testing with reliability and quality. An example is shown

of how the risk analysis and reliability predictions can be used to make decisions about

whether the software is safe to deploy. Lastly we show validation results for a variety of

predictions.

7

Acronyms

OIA: Shuttle operational increment A

OIB: Shuttle operational increment B

OIC: Shuttle operational increment C

OID: Shuttle operational increment D

Assumptions [1]:

1. Faults that cause failures are removed.

2. As more failures occur and more faults are corrected, remaining failures will be reduced.

3. The remaining failures are "zero" for those OI's that were executed for extremely long

times (years) with no additional failure reports; correspondingly, for these OI's, maximum

failures equals total observed failures.

4. The number of failures detected in one interval is independent of the failure count in

another.

5. Only "new" failures are counted (i.e., failures that are repeated as a consequence of not

correcting a fault are not counted).

Definitions

o Interval: an integer time unit t of constant length defined by t-1<t<t+1, where t>0; failures

are counted in intervals (e.g., one failure occurred in interval 4) [1, 7].

o Number of Intervals: the number of contiguous integer time units t of constant length

8

represented by a positive real number (e.g., the predicted time to next failure is 3.87

intervals).

o Operational Increment (OI): a software system comprised of modules and configured

from a series of builds to meet Shuttle mission functional requirements.

o Time: Continuous CPU execution time over an interval range.

Severity Codes:

1. Severe Vehicle or Crew Performance Implications.

2. Affects Ability to Complete Mission (Not a safety issue).

3. Workaround Available, Minimal Effect on Procedures.

4. Insignificant (Paperwork, etc.).

5. Not Visible to User.

Nomenclature

o Predicted at time t: a prediction made in the interval t.

o Safety: software safety; not system safety.

Notation

á failure rate at the beginning of interval s

â negative of derivative of failure rate divided by failure rate (i.e., relative failure

rate)

F(i) predicted failure count in the range [1,i]; used in computing MSEr

F observed failure count during interval j since interval i; used in computing MSEij T

9

F(t) predicted failure count in the range [1, t]

F given number of failures to occur after interval t; used in predicting T (t)t F

F(t ,t) predicted failure count in the range [t ,t]1 2 1 2

F(4) predicted failure count in the range [1,4]; maximum failures over the life of the

software

i current interval

j next interval j>i where F >0ij

J maximum j#t where F >0.ij

MSE mean square error criterion for selecting s for failure count predictionsF

MSE mean square error criterion for selecting s for remaining failure predictionsr

MSE mean square error criterion for selecting s for time to next failure predictionsT

p(t) fraction of remaining failures predicted at time t

Q(t) operational quality predicted at time t; the complement of p(t); the degree to

which software is free of remaining faults (failures)

r critical value of remaining failures; used in computing RCM r(t)c t

r(t) remaining failures predicted at time t

r(t) remaining failures predicted at total test time tt t

ªr(T ,t) reduction in remaining failures that would be achieved if the software wereF

executed for a time T , predicted at time t F

10

RCM r(t) risk criterion metric for remaining failures at total test time tt t

RCM T (t) risk criterion metric for time to next failure at total test time tF t t

s starting interval for using observed failure data in parameter estimation

s optimal starting interval for using observed failure data, as determined by MSE*

criterion

t cumulative time in the range [1,t]; last interval of observed failure data; current

interval

t mission duration (end time-start time); used in computing RCM T (t)m F t

t total test time (observed or predicted)t

T (t) time to next failure(s) predicted at time tF

T (t) time to next failure predicted at total test time tF t t

T (ªr,t) time to next N failures that would be achieved if remaining failures were reducedF

by ªr, predicted at time t

T time since interval i to observe number of failures F during interval j; used inij ij

computing MSET

X observed failure count in the range [1,i]i

X observed failure count in the range [1,s-1]s-1

X observed failure count in the range [s,t]s,t

X observed failure count in the range [s,t]s,t1 1

X observed failure count in the range [1,t]t

11

X observed failure count in the range [1,t]t1 1

2. Criteria for Safety

If we define our safety goal as the reduction of failures that would cause loss of life, loss

of mission, or abort of mission to an acceptable level of risk [11], then for software to be

ready to deploy, after having been tested for total time t , we must satisfy the followingt

criteria:

1) predicted remaining failures r(t)<r , (1)t c

where r is a specified critical value , andc

2) predicted time to next failure T (t)>t , (2)F t m

where t is mission duration.m

For systems that are tested and operated continuously like the Shuttle, t , T (t), and t aret F t m

measured in execution time. Note that, as with any methodology for assuring software safety,

we cannot guarantee safety. Rather, with these criteria, we seek to reduce the risk of

deploying the software to an acceptable level.

2.1 Remaining Failures Criterion

Using assumption 1 that the faults that cause failures are removed (this is the case for the

Shuttle), criterion 1 specifies that the residual failures and faults must be reduced to a level

where the risk of operating the software is acceptable. As a practical matter, we suggest r =1.c

That is, the goal would be to reduce the expected remaining failures to less than one before

deploying the software. The reason for this choice is that one or more remaining failures

12

would constitute unacceptable risk for safety critical systems. This is the threshold used by

the Shuttle software managers. One way to specify r is by failure severity level (e.g., severityc

level 1 for life threatening failures). Another way, which imposes a more demanding safety

requirement, is to specify that r represents all severity levels. For example, r(t)<1 wouldc t

mean that r(t) must be less than one failure, independent of severity level.t

If we predict r(t)$r , we would continue to test for a total time t '>t that is predicted tot c t t

achieve r(t ')<r , using assumption 2 that we will experience more failures and correct moret c

faults so that the remaining failures will be reduced by the quantity r(t)-r(t '). If thet t

developer does not have the resources to satisfy the criterion or is unable to satisfy the

criterion through additional testing, the risk of deploying the software prematurely should

be assessed (see the next section). We know from Dijkstra's dictum that we cannot

demonstrate the absence of faults [6]; however we can reduce the risk of failures occurring

to an acceptable level, as represented by r . This scenario is shown in Figure 1. In case A wec

predict r(t)<r and the mission begins at t . In case B we predict r(t)$r and postpone thet c t t c

mission until we test for total time t ' and predict r(t ')<r. In both cases criterion 2) must alsot t

be satisfied for the mission to begin.

2.2 Time to Next Failure Criterion

Criterion 2 specifies that the software must survive for a time greater than the duration of

the mission. If we predict T (t)#t , we would continue to test for a total time t ''>t that isF t m t t

predicted to achieve T (t ")>t , using assumption 2 that we will experience more failures andF t m

13

correct more faults so that the time to next failure will be increased by the quantity T (t ")-F t

T (t). Again, if it is infeasible for the developer to satisfy the criterion for lack of resourcesF t

or failure to achieve test objectives, the risk of deploying the software prematurely should be

assessed (see the next section). This scenario is shown in Figure 2. In case A we predict

T (t)>t and the mission begins at t . In case B we predict T (t)#t and postpone theF t m t F t m

mission until we test for total time t '' and predict T (t ")>t In both cases criterion 1) mustt F t m.

also be satisfied for the mission to begin. If neither criterion is satisfied, we test for a time

which is the greater of t ' or t ''.t t

3. Risk Assessment

The amount of total test time t can be considered a measure of the degree to whicht

software reliability goals have been achieved. This is particularly the case for systems like the

Shuttle where the software is subjected to continuous and rigorous testing for several years

in multiple facilities, using a variety of operational and training scenarios (e.g., by Lockheed-

Martin in Houston, by NASA in Houston for astronaut training, and by NASA at Cape

Kennedy). If we view t as an input to a risk reduction process, and r(t) and T (t) as thet t F t

outputs, we can portray the process as shown in Figure 3, where r and t are shown as "riskc m

criteria levels" of safety that control the process. While we recognize that total test time is not

the only consideration in developing test strategies and that there are other important factors,

like the consequences for reliability and cost, in selecting test cases [20], nevertheless, for

the foregoing reasons, total test time has been found to be strongly positively correlated with

14

reliability growth for the Shuttle [15].

3.1 Remaining Failures

We can formulate the mean value of the risk criterion metric (RCM) for criterion 1 as

follows:

RCM r(t)= (r(t)-r)/r =(r(t)/r)-1 (3)t t c c t c

We plot equation (3) in Figure 4 as a function of t for r =1, where positive, zero, andt c

negative values correspond to r(t)>r , r(t)=r , and r(t)<r , respectively. In Figure 4, theset c t c t c

values correspond to the following regions: UNSAFE (i.e., above the X-axis predicted

remaining failures are greater than the "safe" value); NEUTRAL (i.e., on the X-axis

predicted remaining failures equal to the "safe" value); and SAFE (i.e., below the X-axis

predicted remaining failures are less than the "safe" value).

This graph is for the Shuttle operational increment OID. In this example we see that at

approximately t =57 the risk transitions from the UNSAFE region to the SAFE region.t

 3.2 Time to Next Failure

Similarly, we can formulate the mean value of the risk criterion metric (RCM) for criterion

2 as follows:

RCM T (t)=(t -T (t))/t =1-(T (t))/t (4)F t m F t m F t m

We plot equation (4) in Figure 5 as a function of t for t =8 days (a typical mission durationt m

time for this OI), where positive, zero, and negative risk corresponds to T (t)<t , T (t)=t ,F t m F t m

and T (t)>t , respectively. In Figure 5, these values correspond to the following regions:F t m

15

UNSAFE (i.e., above the X-axis predicted time to next failure is less than the "safe" value);

NEUTRAL (i.e., on the X-axis predicted time to next failure is equal to the "safe" value); and

SAFE (i.e., below the X-axis predicted time to next failure is greater than the "safe" value).

This graph is for the Shuttle operational increment OIC In this example we see that at.

all values of t the RCM is in the SAFE region.t

4. Approach to Prediction

In order to support our safety goal and to assess the risk of deploying the software, we

make various reliability and quality predictions. In addition, we use these predictions to

perform tradeoff analysis between reliability and total test time. Thus, our approach is to use

a software reliability model to predict the following: 1) maximum failures, remaining

failures, and operational quality (as defined in the next section); 2) time to next failure

(beyond the last observed failure); 3) total test time necessary to achieve required levels of

remaining failures (fault) level, operational quality, and time to next failure; and 4)

tradeoffs between increases in levels of reliability and quality with increases in testing.

5. Prediction Equations

The following prediction equations are based on the Schneidewind Software Reliability

Model [1, 14, 15, 16], one of the four models recommended in the AIAA Recommended

Practice for Software Reliability [1].These equations use assumptions 4-7 in the

Introduction. We derive these equations in the next section. . We apply them to analyze the

reliability of the Shuttle flight software. All predictions are mean values.

16

Because the flight software is run continuously, around the clock, in simulation, test, or

flight, "time" refers to continuous execution time and total test time refers to execution time

that is used for testing. Failure count intervals are equal to 30 days of continuous execution

time. This interval is long because the Shuttle software is tested for several years; a 30 day

interval length is a convenient for recording failures for software that is tested this long.

In the following equations, the parameter á is the failure rate at the beginning of interval

s; the parameter â is the negative of derivative of failure rate divided by failure rate (i.e.,

relative failure rate); t is the last interval of observed failure data; s is the starting interval for

using observed failure data in parameter estimation that will result in the best estimates of á

and â and the most accurate predictions [14]; X is the observed failure count in the ranges-1

[1,s-1]; X is the observed failure count in the range [s,t]; and X =X +X . These failures,t t s-1 s,t

count interval relationships are shown in Figure 6; also shown is total test time t . Failures aret

counted against operational increments (OIs). Data from four Shuttle OI's, designated OIA,

OIB, OIC, and OID are used in this analysis.

5.1 Cumulative Failures

When maximum likelihood estimates are obtained for the parameters á and â, with s as

the starting interval for using observed failure data, we obtain the predicted failure count in

the range [s,t]:

F =(á/â)[1-exp(-â((t-s+1)))] (5)s,t

Furthermore, if we add X , the observed failure count in the range [1,s-1], we obtains-1

17

predicted failure count in the range [1, t]:

F(t)=(á/â)[1-exp(-â((t-s+1)))]+X (6)s-1

5.2 Failures in an Interval Range

If we set t/t and subtract X =X +X , the observed failure count in the range [1,t],2 t1 s-1 s,t1 1

from equation (6), we obtain the predicted failure count in the range [t ,t]:1 2

F(t ,t)=(á/â)[1-exp(-â((t -s+1)))]-X , (7)1 2 2 s t1

5.3 Maximum Failures

If we let t64 in equation (6), we obtain the predicted failure count in the range [1,4]

(i.e., maximum failures over the life of the software):

F(4)=á/â+X (8)s-1

5.4 Remaining Failures

To obtain predicted remaining failures r(t) at time t, we subtract X =X +X from t s-1 s,t

equation (8):

r(t)=(á/â)-X =F(4)-X (9)s,t t

r(t) can also be expressed as a function of total test time t by substituting equation (5)t

into equation (9) and setting t/t :t

r(t)=(á/â)(exp-â[t -(s-1)]) (10)t t

5.5 Fraction of Remaining Failures:

If we divide equation (9) by equation (8), we obtain fraction of remaining failures

tt'[log[á/(â[r(tt)])]]/â%(s&1)

TF(t)'[(log[á/(á&â(Xs,t%Ft))])/â]&(t&s%1)

for (á/â)>(Xs,t%Ft)

18

 (13)

(14)

predicted at time t:

p(t)=r(t)/F(4) (11)

5.6 Operational Quality

The operational quality of software is the complement of p(t). It is the degree to which

software is free of remaining faults (failures), using assumption 1 that the faults that cause

failures are removed. It is predicted at time t as follows:

Q(t)=1-p(t) (12)

5.7 Total Test Time to Achieve Specified Remaining Failures

The predicted total test time required to achieve a specified number of remaining failures

at t , r(t), is obtained from equation (10) by solving for t :t t t

5.8 Time to Next Failure

By substituting t =t+T (t) in equation (7), setting t /t, defining F =F(t,t+T),and solving2 F 1 t F

for T (t), we obtain the predicted time for the next F failures to occur, when the current timeF t

is t :

The terms in T (t) have the following definitions: F

19

t: Current interval;

X : Observed failure count in the range [s,t]; ands,t

F : Given number of failures to occur after interval t.t

We consider equations (5)-(11) and (14) to be predictors of reliability that are related to

safety; equation (13) represents the predicted total test time required to achieve stated safety

goals. If a quality requirement is stated in terms of fraction of remaining failures, the

definition of Q as Operational Quality, equation (12), is consistent with the IEEE definition

of quality: the degree to which a system, component, or process meets specified

requirements [9]. For example, if a reliability specification requires that software is to have

no more that 5% remaining failures (i.e., p=.05, Q=.95) after testing for a total of t intervals,t

then a predicted Q of .90 would indicate the degree to which the software meets specified

requirements.

5.9 Relating Time to Next N Failures and Remaining Failures Predictions

Although we have shown the risk analysis and prediction equations for remaining failures

and time to next failure separately, it would be useful to combine these quantities in one

equation so that we can predict the effect on one quantity for a given change in the other. In

particular we want to predict, at time t, the time to the next N failures, T (ªr,t), that wouldF

be achieved if remaining failures were reduced by ªr. We use assumption 1 that N=ªr; that

is, faults that cause failures are removed. When N=1, we have the familiar time to next

failure. When N>1, T (ªr,t) is interpreted as cumulative execution time for the N failures toF

20

occur. Conversely, we want to predict, at time t, the reduction in remaining failures,

ªr(T ,t), that would be achieved if the software were executed for a time T . This relationshipF F

is derived by using equation (10) and setting ªr=r(t)-r(t), t =t +ªt, and t /t, and solving for1 t t 1 1

ªt/T (ªr,t):F

T (ªr,t)=(-1/â)[log[1-((âªr/á)(exp(â(t-s+1))))]] (15)F

for ((âªr/á)(exp(â(t-s+1))))<1.

Equation (15) is analogous to equation (14). Also, ªr in equation (15) is analogous to F int

equation (14), if we use assumption 1 that the faults that cause the F failures are removed,t

with a corresponding reduction in remaining failures. The two equations produce the same

result for the same parameter values. Equation (15) has the advantage of being a simpler

computation because it does not require the observed data vector X , which is used ins,t

equation (14). Also, equation (15) is convenient to use for trading off time to next N failures

against reduction in remaining failures, and the effort and the total test time implicit in

making the reductions.

We can invert equation (15) to solve for the reduction in remaining failures that would

be achieved by executing the software for a time T .F

 ªr(T ,t)=(á/â)[exp(-â(t-s+1))][1-exp(-â(T))] (16)F F

6. Criterion for Optimally Selecting Failure Data

The first step in identifying the optimal value of s (s) is to estimate the parameters á and*

â for each value of s in the range [1,t] where convergence can be obtained [1, 14, 16]. Then

21

the Mean Square Error (MSE) criterion is used to select s , the failure count interval that*

corresponds to the minimum MSE between predicted and actual failure counts (MSE), timeF

to next failure (MSE), or remaining failures (MSE), depending on the type of prediction.T r

The first two were reported in [14]. In this paper we develop MSE . MSE is also the criterionr r

for maximum failures (F(4)) and total test time (t) because the two are functionally relatedt

to remaining failures (r(t)); see equations 9 and 13. We also show MSE because it is usedT

in predictions that involve time to next failure: T (t), T (Îr,t), and ªr(T ,t). Once á, â, andF F F

s are estimated from observed counts of failures, the foregoing predictions can be made. The

reason MSE is used to evaluate which triple (á, â, s) is best in the range [1,t] is that research

has shown that because the product and process change over the life of the software, old

failure data (i.e., s=1) are not as representative of the current state of the product and process

as the more recent failure data (i.e., s>1) [14]. The optimal values of s (s) that were used in*

the risk analysis and prediction examples are shown in Tables 1-4.

The Statistical Modeling and Estimation of Reliability Functions for Software

(SMERFS) [7] is used for all predictions except t , T (ªr,t), and ªr(T ,t), which are nott F F

implemented in SMERFS.

6.1 Mean Square Error Criterion for Remaining Failures

Although we can never know whether additional failures may occur, nevertheless we can

form the difference between two equations for r(t): (9), which is a function of predicted

maximum failures and the observed failures, and (10), which is a function of total test time,

MSEr'

j
t

i's
[F(i)&Xi]

2

t&s%1

MSET'

j
J&1

i's
[[log[á/(á&â(Xs,i%Fij))]/â&(i&s%1)]&Tij]

(J&s)

for (á/â)>(Xs,i%Fij)

22

(17)

 (18)

and apply the MSE criterion. This yields the following Mean Square Error (MSE) criterionr

for number of remaining failures:

where F(i) is the predicted failure count in the range [1,i] and X is the observed failurei

count in the range [1,i].

6.2 Mean Square Error Criterion for Time to Next Failure(s)

The Mean Square Error (MSE) criterion for time to next failure(s), which was derivedT

in [14], is given by equation (18):

The terms in MSE have the following definitions: T

i: Current interval;

j: Next interval j>i where F >0;ij

X :Observed failure count in the range [s,i];s,i

F : Observed failure count during interval j since interval i;T : Time since i to observeij ij

number of failures F during j (i.e., T =j-i)ij ij

23

t: The last interval of observed failure data; and

J: Maximum j#t where F >0.ij

7. Relating Testing to Reliability and Quality

7.1 Predicting Total Test Time and Remaining Failures

We use equation (8) to predict maximum failures (F(4)=11.76) for Shuttle OIA. Using

given values of p and equation (11) and setting t/t ,, we predict r(t) for each value of p. Thet t

values of r(t) are the predictions of remaining failures after the OI has been executed fort

total test time t . Then we use the values of r(t) and equation (13) to predict correspondingt t

values of t . The results are shown in Figure 7, where r(t) and t are plotted against p fort t t

OIA. Note that required total test time t rises very rapidly at small values of p and r(t). Alsot t

note that the maximum value of p on the plot corresponds to t =18 and that smaller valuest

correspond to future values of t (i.e., t >18).t t

7.2 Predicting Operational Quality

Equation (12) is a useful measure of the operational quality of software because it

measures the degree to which faults have been removed from the software (using assumption

1 that the faults that cause failures are removed), relative to predicted maximum failures. We

call this type of quality operational (i.e., based on executing the software) to distinguish it

from static quality (e.g., based on the complexity of the software).

Using given values of p and equations (11) and (12)and setting t/t , we compute r(t) andt t

Q, respectively. The values of r(t) are then used in equation (13) to compute t . Thet t

24

corresponding values of Q and t are plotted in Figure 8 as Operational Quality and Totalt

Test Time, respectively for OIA. We again observe the asymptotic nature of the testing

relationship in the great amount of testing required to achieve high levels of quality.

7.3 Predicting Time to Next Failure

First, we show the actual time to next failure in Figure 9 for OIA on the solid curve that

has occurred in the execution time range t=[1,18], where one failure occurred at t=4, 14, and

18, and two failures occurred at t=8 and 10. All failures were Severity Level 3: "Workaround

available; minimal effect on procedures". The way to read the graph is as follows: If we take

a given failure, Failure 1, for example, it occurs at t=4; therefore, at t=1 the time to next

failure=3 (4-1); at t=2 the time to next failure=2 (4-2); at t=4 Failure 1 occurs, so the time

to next failure=4 (8-4) now refers to Failure 2, etc. Next, using equation (14), we predict

the time to next failure T (18) to be 4 (3.87 rounded) on the dashed curve. Based on theF

foregoing, this prediction indicates we should continue testing if T (18)=3.87#t (missionF m

duration).

7.4 Predicting Tradeoffs of Time to Next N Failures with Reduced Remaining

Failures

By using equation (15), we can predict time to next N failures, T (ªr,t), as a function ofF

reduction in remaining failures, ªr. This is shown in Figure 10 for OIA , where, for example,

with ªr=1, we predict T (1,18)=3.87 (i.e., a reduction in remaining failures of 1F

corresponds to achieving a time to next failure of 3.87 intervals from the current interval 18).

25

Conversely, by using equation (16), we predict reduction in remaining failures, ªr(T ,t),F

as a function of time to next failure, T . This is shown in Figure 11 for OIA, where, forF

example, with T =3.87, we predict ªr(3.87,18)=1 (i.e., executing OIA for a time to nextF

failure of 3.87 intervals from the current interval 18 corresponds to achieving a reduction in

remaining failures of 1). We provide further elaboration of these graphs in the next section.

8. Making Safety Decisions

In making the decision about how long to test, t , we apply our safety criteria and riskt

assessment approach. We use Table 1 to illustrate the process. For t =18 (when the lastt

failure occurred on OIA), r =1, and t =8 days (.267 intervals), we show remaining failures,c m

RCM for remaining failures, time to next failure, RCM for time to next failure, and

operational quality. These results indicate that safety criterion 2 is satisfied but not criterion

1 (i.e., UNSAFE with respect to remaining failures); also operational quality is low.

By looking at Figure 10 and Table 1, we see that if we reduce remaining failures r(18)

by 1 from 4.76 to 3.76 (non-integer values are possible because the predictions are mean

values), the predicted time to next failure that would be achieved is T (18)=3.87 intervals.F

These predictions satisfy criterion 2 (i.e., T (18)=3.87>t =.267) but not criterion 1 (i.e.,F m

r(18)=4.76>r =1). Note also in Figure 10 and Table 1 that fraction of remaining failures p=1-c

Q=.40 at r(18)=4.76. Now, if we continue testing for a total time t =52 intervals, as shownt

in Figure 10 and Table 1, and reduce remaining failures from 4.76 to .60, the predicted time

to next 4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This

26

corresponds to t =18+34=52 intervals. That is, if we test for an additional 34 intervals,t

starting at interval 18, we would expect to experience 4.16 failures. These predictions now

satisfy criterion 1 because r(52)=.60<r =1. Note also in Figure 10 and Table 1 that fractionc

of remaining failures p=1-Q=.05 at r(52)=.60. Using the converse of the relationship in

Figure 10, provides another perspective, as shown in Figure 11, where we see that if we

continue to test for an additional T =34 intervals, starting at interval 18, the predictedF

reduction in remaining failures that would be achieved is 4.16 or r(52)=.60.

Lastly, Figure 12 shows the Launch Decision, relevant to the Shuttle, (or, generically, the

Deployment Decision), where remaining failures are plotted against total test time for OIA.

With these results in hand, the software manager can decide whether to deploy the software

depending on factors such as predicted remaining failures, as shown in Figure 12, along

with considering other factors such as the trend in reported faults over time, inspection

results, etc.. If testing were to continue until t =52, the predictions in Figure 12 and Table 1t

would be obtained. These results show that criterion 1 is now satisfied (i.e., SAFE) and

operational quality is high. We also see from Figure 12 that at this value of t , furthert

increases in t would not result in a significant increase in reliability and safety. Also note thatt

at t =52 it is not feasible to make a prediction of T (52) because the predicted remainingt F

failures is less than one.

27

Table 1Safety Criteria Assessment

OIA

r =1 t =8c m

days

t á â s r(t) RCM s T (t) RCM Qt
*

t
*

F t

18 .534 .061 9 4.76 3.76 9 3.87 -13.49 .60

52 .534 .061 9 .60 -.40 9 * * .95
30 day Total Test Time and Time to Next Failure Intervals.

 * Cannot predict because predicted Remaining Failures is less than one.

9. Summary of Predictions and Validation

9.1 Predictions

Table 2 shows a summary of remaining and maximum failure predictions compared with

actual failure data, where available, for OIA, OIB, OIC, and OID. Because we do not know

the actual remaining and maximum failures, we use assumption 3: remaining failures are

"zero" for those OI's (B, C, and D) that were executed for extremely long times (years) with

no additional failure reports; correspondingly, for these OI's, we use assumption 3 that

maximum failures equals total observed failures.

28

Table 2

Predicted Remaining and Maximum Failures versus Actuals

t s á â r(t) Actual r F(44) Actual Ft
*

t

OIA 18 9 .534 .061 4.76 ? 11.76 7A A

OIB 20 1 1.69 .131 0.95 1 12.95 13B B

OIC 20 7 1.37 .126 1.87 2 12.87 13C C

OID 18 6 .738 .051 7.36 4 17.36 14D D

30 day Total Test Time Intervals

Time of last recorded failure:

A. No additional failures have been reported after 17.17 intervals.

B. The last recorded failure occurred at 63.67 intervals.

C. The last recorded failure occurred at 43.80 intervals.

D. The last recorded failure occurred at 65.03 intervals.

Table 3 shows a summary of total test time and time to next failure predictions compared

with actual execution time data, where available, for OIA, OIB, OIC, and OID.

29

Table 3

 Predicted Total Test Time and Time to Next Failure versus Actuals

s t (r=1) Actual t t s T (t) Actual T*
t t

*
F F

OIA 9 43.59 ? 18 9 3.9 ?

OIB * *1 63.67 20 * 43.67

OIC 7 24.98 27.07 20 5 4.2 7.63

OID 6 56.84 58.27 18 5 6.4 6.2
30 day Total Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failures is less than one.

Additional Predictions for OID:

The following are additional predictions of total test time for OID that are not listed

in Table 3: t (r=2)=43.35, Actual=45.17; t (r=3)=35.47, Actual=23.70.t t

Table 4 shows a summary of the predictions of time to next failure for a given reduction

in remaining failures of 1 and the predictions of reduction in remaining failures for given

time to next failure compared with actual execution time and failure data, where available, for

OIA, OIB, OIC, and OID.

30

Table 4

Predicted Tradeoffs of Time to Next Failure with Reduced Remaining Failures

versus Actuals

t s* á â T (ÎÎr=1,t) Actual (T ,t) ÎÎr(T ,t) ActualF F F

OIA 18 9 .534 .061 3.87 ? 3.87 1.00 ?

OIB 20 1 1.69 .131 * 43.67 43.67 .95 1.0

OIC 20 5 1.34 .096 4.16 7.63 7.63 1.58 1.0

OID 18 5 1.61 .137 6.35 6.20 6.20 .99 1.0
30 day Total Test Time and Time to Next Failure Intervals.

* Cannot predict because predicted Remaining Failures is less than one.

9.2 Validation

A total of 18 predictions were made across Tables 2, 3, and 4, where there was an actual

value to compare: three r(t), four F(4), four t , two T (t), two T (Îr,t), and three Îr(T ,t). Thet F F F

mean relative error (mean of (actual-predicted)/actual) of prediction is 22.92% and the

standard deviation is 27.61%. In making these predictions we note both the sparsity of post-

delivery failures and the extremely long test times for Shuttle flight software, as summarized

in Table 5. See the Appendix for a listing of the failure data. Despite the fact that the

Schneidewind Software Reliability Model uses optimal selection of failure data, and thus less

than the full set of data, there must be a minimum number of failures to start the parameter

estimation process, understanding that the model will then select the optimal value of s(s).*

Thus, given the sparsity of the data, all failures in Table 5 were used in parameter estimation,

31

regardless of their severity. Furthermore, as described earlier, a more conservative risk

assessment is produced if all categories of failures are included in the analysis.

Table 5

Failure Distribution by Severity Code

Severity 2 Severity 3 Severity 4 Maximum Total

Failures Failures Failures Failures Test Time

OIA 0 7 0 7 18

OIB 5 8 0 13 64

OIC 3 6 2 13 44*

OID 6 8 0 14 66
30 day Total Test Time Intervals.

* Unknown Severity for two failures

There are no post-delivery Severity 1 or 5 failures in the above Operational Increments.

32

APPENDIX

Observed Failure Counts

(Interval i = 30 days execution time)

i OIA OIB OIC OID
1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 1 2 0 0
5 0 1 0 3
6 0 0 2 1
7 0 0 1 0
8 2 2 3 1
9 0 1 1 0
10 2 0 0 1
11 0 2 0 1
12 0 0 0 0
13 0 1 1 2
14 1 0 1 0
15 0 0 0 0
16 0 0 0 0
17 0 0 1 0
18 1 0 0 1
19 0 0 0
20 0 1 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 1
25 0 0 0
26 0 0 0
27 0 0 0
28 0 1 0
29 0 0 0
30 0 0 0

31-63 0
64 1

31-43 0
44 1

31-45 0
46 1
47-58 0
59 1
60-65 0
66 1

Totals:

7 13 13 14

33

Acknowledgments
We acknowledge the support provided for this project by Dr. William Farr, Naval Surface

Warfare Center; Ms. Alice Lee of NASA; U.S. Marine Corps Tactical Systems Support
Activity; and Mr. Ted Keller and Ms. Patti Thornton of Lockheed-Martin. We also
acknowledge the helpful comments of the reviewers.

References

[1] Recommended Practice for Software Reliability, R-013-1992, American National Standards Institute/American Institute of
Aeronautics and Astronautics, 370 L'Enfant Promenade, SW, Washington, DC 20024, 1993.

[2] Barry W. Boehm, "Software Risk Management: Principles and Practices", IEEE Software, Vol. 8, No. 1, January 1991, pp. 32-
41.

[3] C. Billings, et al, "Journey to a Mature Software Process", IBM Systems Journal, Vol. 33, No. 1, 1994, pp. 46-61.
[4] Siddhartha R. Dalal and Allen A. McIntosh, "When to Stop Testing for Large Software Systems with Changing Code", IEEE

Transactions on Software Engineering, Vol. 20, No. 4, April 1994, pp. 318-323.
[5] Siddhartha R. Dalal and Allen A. McIntosh, "Some Graphical Aids for Deciding When to Stop Testing", IEEE Journal on

Selected Areas in Communications, Vol. 8, No.2, February 1990, pp. 169-175.
[6] E. W. Dijkstra, "Structured Programming", Software Engineering Techniques, eds. J. N. Buxton and B. Randell, NATO

Scientific Affairs Division, Brussels 39, Belgium, April 1970 pp. 84-88.
[7] William H. Farr and Oliver D. Smith, Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS)

Users Guide, NAVSWC TR-84-373, Revision 3, Naval Surface Weapons Center, Revised September 1993.
[8] Willa Ehrlich, et al, "Determining the Cost of a Stop-Test Decision", IEEE Software, March 1993, pp. 33-42.
[9] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12.1990, The Institute of Electrical and

Electronics Engineers, New York, New York, March 30, 1990.
[10] Ted Keller, Norman F. Schneidewind, and Patti A. Thornton "Predictions for Increasing Confidence in the Reliability of the

Space Shuttle Flight Software", Proceedings of the AIAA Computing in Aerospace 10, San Antonio, TX, March 28, 1995, pp.
1-8.

[11] Nancy G. Leveson, "Software Safety: What, Why, and How", ACM Computing Surveys, Vol. 18, No. 2, June 1986, pp. 125-163.
[12] John D. Musa and A. Frank Ackerman, "Quantifying Software Validation: When to Stop Testing?", IEEE Software, Vol. 6,

No. 3, May 1989, pp. 19-27.
[13] John D. Musa, et al, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New York, 1987.
[14] Norman F. Schneidewind, "Software Reliability Model with Optimal Selection of Failure Data", IEEE Transactions on

Software Engineering, Vol. 19, No. 11, November 1993, pp. 1095-1104.
[15] Norman F. Schneidewind and T. W. Keller, "Application of Reliability Models to the Space Shuttle", IEEE Software, Vol. 9,

No. 4, July 1992 pp. 28-33.
[16] Norman F. Schneidewind, "Analysis of Error Processes in Computer Software", Proceedings of the International Conference

on Reliable Software, IEEE Computer Society, 21-23 April 1975, pp. 337-346.
[17] Nozer D. Singpurwalla, "Determining an Optimal Time Interval for Testing and Debugging Software", IEEE Transactions

on Software Engineering, Vol. 17, No. 4, April 1991, pp. 313-319.
[18] Jeffrey M. Voas and Keith W. Miller, "Software Testability: The New Verification", IEEE Software, Vol. 12, No. 3, May 1995,

pp. 17-28.
[19] Webster's New Universal Unabridged Dictionary, Second Edition, Simon and Shuster, New York, 1979.
[20] Elaine J. Weyuker, "Using the Consequences of Failures for Testing and Reliability Assessment", Proceedings of the Third

ACM SIGSOFT Symposium on the Foundations of Software Engineering, Washington, D.C., October 10-13, 1995, pp. 81-91.

Start Test End Test, Begin Mission End Mission

tt
r(tt)<rc

Start Test Continue Test Begin Mission End Mission

B.

A.

End Test

tt tt'
r(tt)$$rc r(tt)<rc

Figure 1. Remaining Failures Criterion Scenario

Start Test End Test, Begin Mission End Mission

tt

Start Test Continue Test Begin Mission End Mission

B.

A.

End Test

tt tt
’’

Figure 2. Time to Next Failure Criterion Scenario

tm

TF(tt)

TF(tt) TF(tt
’’)

tm

34

Risk

Reduction
tt

Total Test Time

r(tt)

TF(tt)

Reliability Measures

rc tm

Figure 3. Risk Reduction Process

18 33.5 49 64.5 80

Total Test Time (30 Day Intervals)

-0.7

1.3

3.3

5.3

7.3

UNSAFE

SAFE r(tt)<rc

r(tt)>rc r(tt)=rc

Figure 4. RCM for Remaining Failures, OID

35

20 24 28 32 36 40 44

Total Test Time (30 Day Intervals)

-73

-53

-33

-13

7 UNSAFE TF(tt)<tm

SAFE TF(tt)>tm

tm=8 days

TF(tt)=tm

Figure 5. RCM for Time to Next Failure, OIC

s-1 s1 tInterval

Xs-1

i

Xs,t

s: starting interval for using observed failure data in parameter estimation

tt: total test time

Xs-1: observed failure count in the range [1,s-1]

Xs,t: observed failure count in the range [s,t]

Xt: observed failure count in the range [1,t]

Figure 6. Failure Count Interval Relationships

ttTime

36

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

1

2

3

5

Failure 1

Failure 2 Failure 4
Failure 3 Failure 5

Failure 6

Failure 7

Actual Predicted

Execution Time (30 Day Intervals)

Figure 9. Time to Next Failure vs. Execution Time, OIA

0 1 2 3 4 5

0

30

60

90

120

150

p=.05
r=.60
TF=33.94p=.40

r=4.76

Figure 10. Time to Next N Failures vs. Reduction in
Remaining Failures, OIA

38

0 10 20 30 40

Time to Next N Failures (30 Day Intervals)

0

1

2

3

4

5

p=.40,r=4.76

TF=3.87

p=.05
r=.60
TF=33.94

Figure 11. Reduction in Remaining Failures vs. Time to Next N
Failures, OIA

0 120 160

Total Test Time (30 Day Intervals)

0

1

2

3

4

5

(r=.6, tt=52)
EXAMPLE:

tt=Total Test Time Until Launch

8040

Figure 12. Launch Decision: Remaining Failures vs. Total Test
Time, OIA

r=Remaining Failures

39

